Chase Joyner

801 Homework 6

November 24, 2015

Problem 1:

A scale has two pans. The measurement given by the scale is the difference between the weights in pan #1 and pan #2 plus a random error. Thus, if a weight μ_1 is put in pan #1, a weight μ_2 is put in pan #2, then the measurement is $Y = \mu_1 - \mu_2 + \epsilon$. Suppose that $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$, and that in repeated uses of the scale, observations Y_i are independent.

Suppose that two objects, #1 and #2, have weights β_1 and β_2 . Measurements are then taken as follows:

- 1. Object #1 is put on pan #1, nothing on pan #2.
- 2. Object #2 is put on pan #1, nothing on pan #2.
- 3. Object #1 is put on pan #1, object #2 on pan #2.
- 4. Objects #1 and #2 are both put on pan #1.
- (a) Let $\mathbf{Y} = (Y_1, Y_2, Y_3, Y_4)'$ be the vector of observations. Formulate this as a linear model.
- (b) Find vectors \mathbf{a}_1 and \mathbf{a}_2 such that $\hat{\beta}_1 = \mathbf{a}_1^T \mathbf{Y}$ and $\hat{\beta}_2 = \mathbf{a}_2^T \mathbf{Y}$ are the least squares estimators of β_1 and β_2 .
- (c) Find the covariance matrix for $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)'$.
- (d) Find a matrix **A** such that $S^2 = \mathbf{Y}' \mathbf{A} \mathbf{Y}$.
- (e) For the observation $\mathbf{Y} = (7, 3, 1, 7)'$, find S^2 , and estimate the covariance matrix of $\hat{\beta}$.
- (f) Show that four such weighings can be made in such a way that the least squares estimators of β_1 and β_2 have smaller variances than for the experiment above.

Solution:

(a) The linear model for this experiment can be written as

$$Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{bmatrix}.$$

(b) Recall that the least squares estimator for β is $\hat{\beta} = (X'X)^{-}X'Y$. So, it follows that

$$a = (X'X)^{-}X' = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

Therefore, $a'_1 = (1/3, 0, 1/3, 1/3)$ and $a'_2 = (0, 1/3, -1/3, 1/3)$.

(c) By part (b), we have $\hat{\beta} = a^T Y$. Therefore, we have

$$\operatorname{Cov}(\widehat{\beta}) = \operatorname{Cov}(a^T Y) = a^T \operatorname{Cov}(Y) a = \sigma^2 a^T a = \sigma^2 (X' X)^- = \sigma^2 \begin{bmatrix} \frac{1}{3} & 0\\ 0 & \frac{1}{3} \end{bmatrix}.$$

(d) Recall that an estimate of σ^2 is

$$S^{2} = MSE = \frac{Y'(I - M)Y}{r(I - M)}.$$

It follows that A is the matrix

$$A = \frac{I - M}{r(I - M)}.$$

Note that

$$M = X(X'X)^{-}X' = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{2}{3} \end{bmatrix}.$$

Therefore, we have

$$I - M = \begin{bmatrix} \frac{2}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{1}{3} & -\frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix}.$$

Then, notice r(I - M) = r(I) - r(M) = 4 - 2 = 2, and so

$$A = \frac{I - M}{r(I - M)} = \begin{bmatrix} \frac{1}{3} & 0 & -\frac{1}{6} & -\frac{1}{6} \\ 0 & \frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ -\frac{1}{6} & -\frac{1}{6} & 0 & \frac{1}{6} \end{bmatrix}.$$

(e) By part (d), we have

$$S^{2} = Y'AY = \begin{bmatrix} 7 & 3 & 1 & 7 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & -\frac{1}{6} & -\frac{1}{6} \\ 0 & \frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ -\frac{1}{6} & -\frac{1}{6} & 0 & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 1 \\ 7 \end{bmatrix} = 3.$$

Also, by part (b), an estimate of $Cov(\hat{\beta})$ is

$$\widehat{\operatorname{Cov}(\widehat{\beta})} = \widehat{\sigma}^2 \begin{bmatrix} \frac{1}{3} & 0\\ 0 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

(f) We can change the experiment to give design matrix

$$X = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Then, we calculate

$$\operatorname{Cov}(\widehat{\beta}) = \sigma^2 (X'X)^- = \sigma^2 \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{bmatrix}.$$

Since the diagonal of this matrix is smaller than before, we conclude this experiment gives smaller variances for the LSE of β_1 and β_2 .

Problem 2:

Consider the weighing problem above with the two unknown weights β_1 and β_2 .

- (a) Suppose we want Scheffe 95% confidence intervals on all linear combinations of β_1 and β_2 . For the four weighings made and for $\mathbf{Y} = (7, 3, 1, 7)'$, find these intervals for the three linear combinations β_1 , β_2 , and $\beta_1 - \beta_2$.
- (b) Use the Bonferroni method to find 95% simultaneous confidence intervals on these same three linear combinations.
- (c) Suppose that we wish to test $H_0: \beta_1 = \beta_2 = 0$. Then, $\sup_{\mathbf{c} \in C} t_c^2/q = F$ is the corresponding F-statistic. For which value of \mathbf{c} does $t_c^2/q = F$? What is the corresponding \mathbf{a}_c ?
- (d) Find a 95% confidence ellipsoid on $\boldsymbol{\beta} = (\beta_1, \beta_2)'$ for these data.

Solution:

(a) Recall that a $100(1 - \alpha)$ % Scheffe confidence intervals for all linear functions of β are given by

$$\left[c^T \widehat{\beta} \pm \sqrt{p \cdot MSE \cdot f_{\alpha, p, n-p} \cdot c^T (X^T X)^{-1}c}\right]$$

We found MSE = 3 in part (e) of problem 1. Note that the design matrix is

$$X = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & -1\\ 1 & 1 \end{bmatrix}$$

and so p = r(X) = 2. If $c_1 = (1, 0)'$, $c_2 = (0, 1)'$, and $c_3 = (1, -1)'$, then $c'_1\beta = \beta_1 \quad c'_2\beta = \beta_2 \quad c'_3\beta = \beta_1 - \beta_2.$

Lastly, by part (a) from problem 1,

$$\hat{\beta} = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} Y = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

Therefore, the intervals for the three linear combinations are

$$\begin{bmatrix} c_1'\widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_1'(X'X)^{-1}c_1} \end{bmatrix} = \begin{bmatrix} -1.164, 11.164 \end{bmatrix}, \\ \begin{bmatrix} c_2'\widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_2'(X'X)^{-1}c_2} \end{bmatrix} = \begin{bmatrix} -3.164, 9.164 \end{bmatrix}, \\ \begin{bmatrix} c_3'\widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_3'(X'X)^{-1}c_3} \end{bmatrix} = \begin{bmatrix} -6.718, 10.718 \end{bmatrix}.$$

(b) Recall that a $100(1 - \alpha_i)\%$ Bonferroni confidence interval is

$$\left[c_i'\widehat{\beta} \pm t_{\alpha_i/2,n-p}\sqrt{d_i \cdot MSE}\right],\,$$

where $d_i = c'_i (X'X)^{-1} c_i$. Note that MSE = 3. Let $\alpha_1 = \alpha_2 = \alpha_3 = \alpha/3$. Using the same c_1, c_2 , and c_3 as in part (a), we have

$$d_1 = c'_1 (X'X)^{-1} c_1 = \frac{1}{3}$$
$$d_2 = c'_2 (X'X)^{-1} c_2 = \frac{1}{3}$$
$$d_3 = c'_3 (X'X)^{-1} c_3 = \frac{2}{3}.$$

Then, the Bonferroni confidence intervals for the three linear combinations are

$$\begin{split} & \left[c_1'\widehat{\beta} \pm t_{\alpha_1/2,4-2}\sqrt{d_1 \cdot MSE}\right] = \left[-2.649, 12.649\right] \\ & \left[c_2'\widehat{\beta} \pm t_{\alpha_2/2,4-2}\sqrt{d_2 \cdot MSE}\right] = \left[-4.649, 10.649\right] \\ & \left[c_3'\widehat{\beta} \pm t_{\alpha_3/2,4-2}\sqrt{d_3 \cdot MSE}\right] = \left[-8.817, 12.817\right]. \end{split}$$

(c) Note that under H_0 , $X_0 = 0_{4\times 2}$ and $M_0 = 0_{4\times 4}$. First, recall

$$F = \frac{Y'(M - M_0)Y/r(M - M_0)}{Y'(I - M)Y/r(I - M)} = \frac{Y'MY/r(M)}{MSE}.$$

We see that

$$Y'MY = \begin{bmatrix} 7 & 3 & 1 & 7 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 1 \\ 7 \end{bmatrix} = 102.$$

Also, r(M) = 2 and MSE = 3. Therefore, F = 17. Again, r(X) = q = 2 and so we want to find a c such that $t_c^2 = 34$. Note that

$$t_c = \frac{c'(\hat{\beta} - \beta)}{\sqrt{MSE \cdot c'(X'X)^{-1}c}},$$

and since $\beta = (0,0)'$, MSE = 3, and squaring both sides, we have

$$t_c^2 = \frac{(5c_1 + 3c_2)^2}{c_1^2 + c_2^2}.$$

Setting this equal to 34 and solving for c_1 and c_2 , we have c = (15, 9)' is a solution. Then, the corresponding a_c is

$$a_{c} = X(X'X)^{-1}c = \begin{bmatrix} \frac{1}{3} & 0\\ 0 & \frac{1}{3}\\ \frac{1}{3} & -\frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} c_{1}\\ c_{2} \end{bmatrix} = \begin{bmatrix} 5\\ 3\\ 2\\ 8 \end{bmatrix}.$$

(d) Recall that from our notes

$$\frac{W^{\star}}{q} \sim F(q, n-p),$$

where $W^{\star} = \sup_{c \in C} t_c^2 = \frac{(\hat{\beta} - \beta)'(X'X)(\hat{\beta} - \beta)}{S_c^2}$. From this, we see that a 95% confidence ellipsoid on β is

$$(\widehat{\beta} - \beta)'(X'X)(\widehat{\beta} - \beta) \le S_c^2 \cdot q \cdot f(\alpha, q, n - p).$$

We calculate

$$(\widehat{\beta} - \beta)'(X'X)(\widehat{\beta} - \beta) = \left(\begin{bmatrix} 5\\3 \end{bmatrix} - \begin{bmatrix} \beta_1\\\beta_2 \end{bmatrix} \right)' \begin{bmatrix} 3 & 0\\0 & 3 \end{bmatrix} \left(\begin{bmatrix} 5\\3 \end{bmatrix} - \begin{bmatrix} \beta_1\\\beta_2 \end{bmatrix} \right) \le 3 \cdot 2 \cdot 19$$

and so we see that

$$(5 - \beta_1)^2 + (3 - \beta_2)^2 \le 38.$$

Therefore, a 95% confidence ellipsoid on β is given by

$$\{\beta \mid (5 - \beta_1)^2 + (3 - \beta_2)^2 \le 38\}.$$