Chase Joyner

801 Homework 6

November 24, 2015

Problem 1:

A scale has two pans. The measurement given by the scale is the difference between the weights in pan \#1 and pan \#2 plus a random error. Thus, if a weight μ_{1} is put in pan \#1, a weight μ_{2} is put in pan $\# 2$, then the measurement is $Y=\mu_{1}-\mu_{2}+\epsilon$. Suppose that $\mathrm{E}(\epsilon)=0, \operatorname{Var}(\epsilon)=\sigma^{2}$, and that in repeated uses of the scale, observations Y_{i} are independent.
Suppose that two objects, $\# 1$ and $\# 2$, have weights β_{1} and β_{2}. Measurements are then taken as follows:

1. Object $\# 1$ is put on pan $\# 1$, nothing on pan $\# 2$.
2. Object $\# 2$ is put on pan $\# 1$, nothing on pan $\# 2$.
3. Object $\# 1$ is put on pan $\# 1$, object $\# 2$ on pan $\# 2$.
4. Objects \#1 and \#2 are both put on pan \#1.
(a) Let $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)^{\prime}$ be the vector of observations. Formulate this as a linear model.
(b) Find vectors \mathbf{a}_{1} and \mathbf{a}_{2} such that $\widehat{\beta}_{1}=\mathbf{a}_{1}^{T} \mathbf{Y}$ and $\widehat{\beta}_{2}=\mathbf{a}_{2}^{T} \mathbf{Y}$ are the least squares estimators of β_{1} and β_{2}.
(c) Find the covariance matrix for $\widehat{\beta}=\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right)^{\prime}$.
(d) Find a matrix \mathbf{A} such that $S^{2}=\mathbf{Y}^{\prime} \mathbf{A Y}$.
(e) For the observation $\mathbf{Y}=(7,3,1,7)^{\prime}$, find S^{2}, and estimate the covariance matrix of $\widehat{\beta}$.
(f) Show that four such weighings can be made in such a way that the least squares estimators of β_{1} and β_{2} have smaller variances than for the experiment above.

Solution:

(a) The linear model for this experiment can be written as

$$
Y=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4}
\end{array}\right] .
$$

(b) Recall that the least squares estimator for β is $\widehat{\beta}=\left(X^{\prime} X\right)^{-} X^{\prime} Y$. So, it follows that

$$
a=\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\begin{array}{cccc}
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] .
$$

Therefore, $a_{1}^{\prime}=(1 / 3,0,1 / 3,1 / 3)$ and $a_{2}^{\prime}=(0,1 / 3,-1 / 3,1 / 3)$.
(c) By part (b), we have $\widehat{\beta}=a^{T} Y$. Therefore, we have

$$
\operatorname{Cov}(\widehat{\beta})=\operatorname{Cov}\left(a^{T} Y\right)=a^{T} \operatorname{Cov}(\mathrm{Y}) a=\sigma^{2} a^{T} a=\sigma^{2}\left(X^{\prime} X\right)^{-}=\sigma^{2}\left[\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right]
$$

(d) Recall that an estimate of σ^{2} is

$$
S^{2}=M S E=\frac{Y^{\prime}(I-M) Y}{r(I-M)} .
$$

It follows that A is the matrix

$$
A=\frac{I-M}{r(I-M)}
$$

Note that

$$
M=X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\begin{array}{cccc}
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right] \text {. }
$$

Therefore, we have

$$
I-M=\left[\begin{array}{cccc}
\frac{2}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
-\frac{1}{3} & -\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right] .
$$

Then, notice $r(I-M)=r(I)-r(M)=4-2=2$, and so

$$
A=\frac{I-M}{r(I-M)}=\left[\begin{array}{cccc}
\frac{1}{3} & 0 & -\frac{1}{6} & -\frac{1}{6} \\
0 & \frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
-\frac{1}{6} & -\frac{1}{6} & 0 & \frac{1}{6}
\end{array}\right]
$$

(e) By part (d), we have

$$
S^{2}=Y^{\prime} A Y=\left[\begin{array}{llll}
7 & 3 & 1 & 7
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{3} & 0 & -\frac{1}{6} & -\frac{1}{6} \\
0 & \frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
-\frac{1}{6} & -\frac{1}{6} & 0 & \frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
1 \\
7
\end{array}\right]=3 .
$$

Also, by part (b), an estimate of $\operatorname{Cov}(\widehat{\beta})$ is

$$
\widehat{\operatorname{Cov}(\widehat{\beta})}=\widehat{\sigma}^{2}\left[\begin{array}{ll}
\frac{1}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(f) We can change the experiment to give design matrix

$$
X=\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]
$$

Then, we calculate

$$
\operatorname{Cov}(\widehat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-}=\sigma^{2}\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right]
$$

Since the diagonal of this matrix is smaller than before, we conclude this experiment gives smaller variances for the LSE of β_{1} and β_{2}.

Problem 2:

Consider the weighing problem above with the two unknown weights β_{1} and β_{2}.
(a) Suppose we want Scheffe 95% confidence intervals on all linear combinations of β_{1} and β_{2}. For the four weighings made and for $\mathbf{Y}=(7,3,1,7)^{\prime}$, find these intervals for the three linear combinations β_{1}, β_{2}, and $\beta_{1}-\beta_{2}$.
(b) Use the Bonferroni method to find 95% simultaneous confidence intervals on these same three linear combinations.
(c) Suppose that we wish to test $H_{0}: \beta_{1}=\beta_{2}=0$. Then, $\sup _{\mathbf{c} \in C} t_{c}^{2} / q=F$ is the corresponding F-statistic. For which value of \mathbf{c} does $t_{c}^{2} / q=F$? What is the corresponding \mathbf{a}_{c} ?
(d) Find a 95% confidence ellipsoid on $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ for these data.

Solution:

(a) Recall that a $100(1-\alpha) \%$ Scheffe confidence intervals for all linear functions of β are given by

$$
\left[c^{T} \widehat{\beta} \pm \sqrt{p \cdot M S E \cdot f_{\alpha, p, n-p} \cdot c^{T}\left(X^{T} X\right)^{-1} c}\right]
$$

We found $M S E=3$ in part (e) of problem 1. Note that the design matrix is

$$
X=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]
$$

and so $p=r(X)=2$. If $c_{1}=(1,0)^{\prime}, c_{2}=(0,1)^{\prime}$, and $c_{3}=(1,-1)^{\prime}$, then

$$
c_{1}^{\prime} \beta=\beta_{1} \quad c_{2}^{\prime} \beta=\beta_{2} \quad c_{3}^{\prime} \beta=\beta_{1}-\beta_{2} .
$$

Lastly, by part (a) from problem 1 ,

$$
\widehat{\beta}=\left[\begin{array}{cccc}
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] Y=\left[\begin{array}{l}
5 \\
3
\end{array}\right] .
$$

Therefore, the intervals for the three linear combinations are

$$
\begin{aligned}
& {\left[c_{1}^{\prime} \widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_{1}^{\prime}\left(X^{\prime} X\right)^{-1} c_{1}}\right]=[-1.164,11.164],} \\
& {\left[c_{2}^{\prime} \widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_{2}^{\prime}\left(X^{\prime} X\right)^{-1} c_{2}}\right]=[-3.164,9.164],} \\
& {\left[c_{3}^{\prime} \widehat{\beta} \pm \sqrt{2 \cdot 3 \cdot f_{0.05,2,4-2} \cdot c_{3}^{\prime}\left(X^{\prime} X\right)^{-1} c_{3}}\right]=[-6.718,10.718] .}
\end{aligned}
$$

(b) Recall that a $100\left(1-\alpha_{i}\right) \%$ Bonferroni confidence interval is

$$
\left[c_{i}^{\prime} \widehat{\beta} \pm t_{\alpha_{i} / 2, n-p} \sqrt{d_{i} \cdot M S E}\right]
$$

where $d_{i}=c_{i}^{\prime}\left(X^{\prime} X\right)^{-1} c_{i}$. Note that $M S E=3$. Let $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha / 3$. Using the same c_{1}, c_{2}, and c_{3} as in part (a), we have

$$
\begin{aligned}
& d_{1}=c_{1}^{\prime}\left(X^{\prime} X\right)^{-1} c_{1}=\frac{1}{3} \\
& d_{2}=c_{2}^{\prime}\left(X^{\prime} X\right)^{-1} c_{2}=\frac{1}{3} \\
& d_{3}=c_{3}^{\prime}\left(X^{\prime} X\right)^{-1} c_{3}=\frac{2}{3} .
\end{aligned}
$$

Then, the Bonferroni confidence intervals for the three linear combinations are

$$
\begin{aligned}
& {\left[c_{1}^{\prime} \widehat{\beta} \pm t_{\alpha_{1} / 2,4-2} \sqrt{d_{1} \cdot M S E}\right]=[-2.649,12.649]} \\
& {\left[c_{2}^{\prime} \widehat{\beta} \pm t_{\alpha_{2} / 2,4-2} \sqrt{d_{2} \cdot M S E}\right]=[-4.649,10.649]} \\
& {\left[c_{3}^{\prime} \widehat{\beta} \pm t_{\alpha_{3} / 2,4-2} \sqrt{d_{3} \cdot M S E}\right]=[-8.817,12.817] .}
\end{aligned}
$$

(c) Note that under $H_{0}, X_{0}=0_{4 \times 2}$ and $M_{0}=0_{4 \times 4}$. First, recall

$$
F=\frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)}=\frac{Y^{\prime} M Y / r(M)}{M S E} .
$$

We see that

$$
Y^{\prime} M Y=\left[\begin{array}{llll}
7 & 3 & 1 & 7
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & -\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
1 \\
7
\end{array}\right]=102 .
$$

Also, $r(M)=2$ and $M S E=3$. Therefore, $F=17$. Again, $r(X)=q=2$ and so we want to find a c such that $t_{c}^{2}=34$. Note that

$$
t_{c}=\frac{c^{\prime}(\widehat{\beta}-\beta)}{\sqrt{M S E \cdot c^{\prime}\left(X^{\prime} X\right)^{-1} c}}
$$

and since $\beta=(0,0)^{\prime}, M S E=3$, and squaring both sides, we have

$$
t_{c}^{2}=\frac{\left(5 c_{1}+3 c_{2}\right)^{2}}{c_{1}^{2}+c_{2}^{2}}
$$

Setting this equal to 34 and solving for c_{1} and c_{2}, we have $c=(15,9)^{\prime}$ is a solution. Then, the corresponding a_{c} is

$$
a_{c}=X\left(X^{\prime} X\right)^{-1} c=\left[\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & \frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
2 \\
8
\end{array}\right] .
$$

(d) Recall that from our notes

$$
\frac{W^{\star}}{q} \sim F(q, n-p)
$$

where $W^{\star}=\sup _{c \in C} t_{c}^{2}=\frac{(\widehat{\beta}-\beta)^{\prime}\left(X^{\prime} X\right)(\widehat{\beta}-\beta)}{S_{c}^{2}}$. From this, we see that a 95% confidence ellipsoid on β is

$$
(\widehat{\beta}-\beta)^{\prime}\left(X^{\prime} X\right)(\widehat{\beta}-\beta) \leq S_{c}^{2} \cdot q \cdot f(\alpha, q, n-p)
$$

We calculate

$$
(\widehat{\beta}-\beta)^{\prime}\left(X^{\prime} X\right)(\widehat{\beta}-\beta)=\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]-\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]\right)^{\prime}\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]-\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]\right) \leq 3 \cdot 2 \cdot 19
$$

and so we see that

$$
\left(5-\beta_{1}\right)^{2}+\left(3-\beta_{2}\right)^{2} \leq 38
$$

Therefore, a 95% confidence ellipsoid on β is given by

$$
\left\{\beta \mid\left(5-\beta_{1}\right)^{2}+\left(3-\beta_{2}\right)^{2} \leq 38\right\}
$$

